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Three results on the multiplication of two n X n matrices are presented. They
contribute to our understanding of the complexity of matrix multiplication, and so
of code decoding, tracking accuracy computation, antenna structural analysis and

other DSN computational tasks.

l. Introduction

Recent results (Refs. 1 and 2) have shown that two n X n
matrices can be multiplied with a number of arithmetic
operations which grows as n%, where a = log, 7 ~ 2.81.
For large n, this represents a significant reduction from
the number of operations which are performed when the
defining equations for matrix multiplication are used.

In this article we contribute to the matrix multiplication
problem in the following ways: (1) conditions are given
under which the conventional method for multiplying two
matrices is optimal, (2) an n? lower bound on the number
of arithmetic operations necessary for the multiplication
of two n X n matrices is derived, and (3) a nearly optimum
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algorithm for the computation of any one (but arbitrary)
element of a product for two matrices is presented.

Il. Fan-Out 1 Complexity of Matrix Multiplication

In another article in this volume,* “straight-line” algo-
rithms are defined. When restricted to arithmetic opera-
tions, these algorithms make repeated use of addition,
subtraction, multiplication, and division over the reals.
Straight-line algorithms have only these operations, and
no loops or conditional branches are permitted. An algo-
rithm is said to compute functions f,, - - - ,f, if these

Johnson, D., Savage, J., and Welch, L., “Combinational Complexity
Measures as a Function of Fan-Out.”
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functions are computed at some of the steps of the algo-
rithm. An algorithm is also said to have fan-out s if no
computation by the algorithm is used externally or inter-
nally more than s times. Then, the s fan-out combinational

complexity of f,, -+ ,fu, Cs(fr, - - - ,fi) is the smallest
number of computation steps in any straight-line algo-
rithm of fan-out s which computes f;, - - -, fz.

Let A = {a;;}, B= {b;;} be two n X n matrices over
the reals. Let D = {d;;} be the result of multiplying A
and B. Then D = AB and

-

n
dij = 2 aikbkj
k=1

THEOREM. Let C, (D) be the 1 fan-out combinational com-
plexity of the n® functions of D = AB, where A, B are
n X n arbitrary matrices over the reals. Then, C,(D) =
n?(2n — 1).

Proof. The standard method for computing D uses n?
multiplications and n? (n — 1) additions so that

C,(D)=n?(2n — 1)

Let 8 be an optimal straight-line algorithm with fan-out
1 which computes D. Then, the computations used to
compute any two elements of D must be different since
the algorithm uses the result of a computation only once.
Thus, the complexity of D is the sum of complexities of
the functions d;;, 1 =i, j <= n. But each of these depends
on 2n variables and it can be shown? that any function de-
pendent on N variable requires at least N — 1 binary com-
putations. Therefore, we have that C,(D)=n?(2n — 1)
which is exactly the upper bound.
Q.E.D.

lll. A Lower Bound on the Combinational
Complexity of Matrix Multiplication
In this section we develop a lower bound to C, (D),

s=2 by lower bounding the complexity of the trace of
D, tr (D). We observe that

tr(D):dn tdop+ -+ dan

and

C,(tr (D)) =C;(dy1,dos, ** , dyn) + Cs (S (x4, %1, * 5 %))

2See Harper, L. H., and Savage, J. E., “Contributions to a Mathe-
matical Theory of Complexity” (this volume).

100

where S (x5,%,, © * * ,%,) is the sum of x, %, - - , %
Since C, (S (x1,%2, * * * ,%,)) =n — 1, we have

Ci(D)=C,(di1,dss, * * * 1 dun)=C,(tr (D)) — (n— 1)

However, the function tr (D) depends on the 2n? variable
entries of A and B so, C, (tr (D)) = 2n* — 1. We conclude
that:
Tueorem, C,(D)=2n>—n+1, s=2

It has been conjectured (Ref. 3) that C, (D) must grow
as n? If so, this bound establishes that this rate of growth
cannot be improved.

IV. An Algorithm for Computing the Elements
of a Matrix Product

Consider the function f(i,{, A, B) = d;; where D =
{d;;} = AB. This function computes an arbitrary element
of AB and we shall show that C; (f), s= L, grows as n*
and that this rate of growth can be achieved.

Without excessive loss of generality, we restrict atten-
tion to matrices with binary elements and to addition and
multiplication modulo 2. Then the integers i and j in
f(i,j, A, B) must be given a binary encoding. It is easily
shown that f depends on all 2n? entries in A and B so that,
independently, of the encoding foriand f, C, (f) = 2n? — 1.

The following algorithm realizes f with 4n? — 1 com-
putations represent i by (e, @, * © © ,@.) and § by

(B1, Bz, * * -+, Bx) where
1, e=1i
e =
0, e=i
1, e=j
Be =
0, e
Then,

f(i> i’ A: B) = é_ ( % Ue aem)( é ,Be’ bme')

=d,;

and this algorithm has (2n + 1) n multiplications and
(2n + 1) (n — 1) additions for a total of 4n* — 1 operations.

It is important to note that the function f (i,f, A, B) pro-
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duces an arbitrary element of AB. If some particular ele-
ment of AB, say d,,, is to be computed, the representation

n
di, = > au by,
k=1

can be used to compute it with 2n — 1 operations. It is
the flexibility implicit in the definition of f that causes its

complexity to grow as n2.

V. Conclusion

Several contributions to the matrix multiplication prob-
lem have been given. It still remains to show whether
Strassen’s algorithm which requires n'°s7 operations can
be improved upon or not.
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